

Overview

- Motivation
 - Astronomy?
 - Connection between EeV energies and anisotropy (Magnetic Fields)
- The acceptance of the Auger detector
- Small Scale Anisotropy
- News from the galactic center

The Auger Observations

- Surface detector
- Fluorescence detector
- Energy
 - Above 0.1 EeV $(E = 10^{18})$
- Position
 - (time, heta, ϕ) \longrightarrow (/, b)
- Composition
 - Atmospheric depth of shower max

Figure courtesy of Paul Mantsch

Astronomy

- Charged particle
 primaries are
 significantly deflected
 by magnetic fields
- Right: proton
 primaries propagating
 through random
 magnetic fields
 - B direction random
 - Cell size = 1 Mpc
 - $-B = 10^{-9}$ gauss

$$EeV = 10^{18} eV$$

Diagram from Cronin (TAUP 2004),

Astronomy

- Galactic B $\approx 10^{-6}$ gauss
 - E ≤ 1 EeV isotropized, trapped in galaxies
- Intergalactic B less understood
 - Galactic-extragalactic transition in energy spectrum may occur near 5 EeV
- Assuming inter-cluster $B \approx 10^{-9}$ gauss,
 - $-E \gtrsim 40 \text{ EeV deflected by } 4^{\circ}\text{-}6^{\circ} \text{ (at } 40\text{MPc)}$
- Thus UHECR are more likely to
 - be of extragalactic origin
 - exhibit meaningful local excesses.

Events Map

- 29,073 Auger events from 1/04 to 5/04 with energies 1-5 EeV
- Data is smoothed, greatest angular error is about 2.2°

The need for an Exposure Map

- Relative # of events expected from an isotropic sky, a.k.a Coverage Map
- Clustering signal is measured with respect to Auger exposure from isotropic sky
- Exposure map can be extracted from data
 - Best event reconstructions for local altitude < 60°
 - Fixed detector, moving Earth ⇒ pan over Ra and Dec
- Two main approaches
 - Shuffling method naturally accounts for changing local conditions, e.g. weather, detector area
 - Analytic fit to event density data

The Analytic Fit

- Uniform in azimuth (ϕ)
- Uniform in sidereal time (nearly)

- ullet Parameterized zenith angle heta fit
 - Geometric: $sin(\theta)cos(\theta)$
 - Energy dependence: Poly(heta)

Figures courtesy J.-Ch. Hamilton

Exposure Map

- Map $(\theta(\mathsf{t}), \phi(\mathsf{t})) \longrightarrow (/, b)$
- Overall form most important for SSA
- Note the over exposure at the ecliptic south pole

Figure courtesy of Benoît Revenu (29th ICRC 2005, Pune India)

Blind Search

Figures courtesy of Benoît Revenu (29th ICRC 2005, Pune India)

3.0 sigma(s)

galactic coordinates

Distribution of Significances

- Distribution of significances must be compared with that of a large number of Monte Carlo simulations
- Shaded areas correspond to 1 σ dispersion of the isotropic simulations

Galactic Center

- Lots of action near the galactic center, including a very large black hole
- AGASA
 - 1.0-2.5 EeV reported excess would translate into $\approx 5.2\sigma$ excess in the Auger data
 - 3 times more statistics and no confirmation
- SUGAR
 - Also reported significant excess near GC
 - 10 times more statistics and no confirmation

GC (cross), galactic plane (solid line), regions of excess of AGASA and SUGAR (circles), AGASA f.o.v. limit (dashed line)

- A) coverage map, same color scale as the significance maps, but in a range [0-1.0]
- B) significance map in the range [0.8-3.2] EeV, smoothed using the individual pointing resolution of the events and a 1.5° filter (Auger-like excess)
- C) same, smoothed at 3.7° (SUGAR-like excess)
- D) in the range [1.0-2.5] EeV, smoothed at 13.3° (AGASA-like excess)

Figures courtesy of A. Letessier-Selvon (29th ICRC 2005, Pune India)

Conclusion

- No significant excesses observed in blind sky search
- No confirmation of AGASA claim near GC
- "Astronomy" may be possible with events with energy greater than 10 EeV
 - Look for maximum likelihood search in this range.

